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Abstract
Breast cancer develops in breast cells. It is the most common type of cancer in women and the second most lethal disease

after lung cancer. The presence of breast masses is an important symptom for detecting breast cancer in its early stages.

This study proposes a hybrid features extraction method to improve the automatic detection of breast cancer by combining

three feature extraction methods: Kinetic Features, convolutional neural network deep learning features, and the newly

proposed Quantum Chebyshev polynomials model. The long short-term memory model is used as a classifier in this study

to detect breast cancer automatically, which could reduce human errors in the diagnosis process. The experimental results

using a large publicly available dataset achieved a detection accuracy of 99.50% for hybrid features in post-contrast 2,

potentially reducing human errors in the diagnosis process.
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1 Introduction

Breast cancer occurs in the breast tissue and is one of the

most common types of cancer in women around the world.

For the last two decades, the incidence rate of new cancer

cases in Iraq has been increasing. The age-standardized

incidence rates (ASIRs) in 2019 were more than double the

rate estimated in 2000. There was particularly a significant

increase trend for breast cancer incidence during the period

of 2000–2019 when the study was conducted [2, 12, 35].

The earlier the diagnosis of breast cancer is performed, and

the better the outcomes are in the long-term. Unfortunately,
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there are many cases of the disease in advanced stages in

developing countries. This reduces dramatically patients’

survival rates. Locally Advanced Breast Cancer (LABC)

can be defined as a multi degree disease that involves

several parts of the breast tissue and the wall of the chest

[20]. It mostly occurs in the ducts of milk or associated

lobules. The most common types of breast cancer are

Ductal Carcinoma in Situ (DCIS), Infiltrating Ductal Car-

cinoma (IDC), Lobular Carcinoma in Situ (LCIS), and

Infiltrating Lobular Carcinoma (ILC) [30]. However,

Breast cancer is a curable disease, and survivors can have a

life similar to that of healthy people.

Imaging is one of the many methods used first to detect

a breast mass, and there are many medical imaging tech-

niques available. Mammography is often used for the

screening of a mass and is not challenged by bone struc-

tures or blood vessels. In fact, mammography is one of the

effective tools used for screening breast cancer. Screening

is one of the most effective methods to detect cancer in

early stages, and mammography has a strong contribution

to the screening process. Screening is recommended in

clinical practice and guidelines and can contribute to

increasing the survival rates by 5 years. However, mam-

mography has limitations when screening dense tissue as

the sensitivity and specificity decrease when compared to

other imaging modalities [5, 15].

Ultrasound is a medical imaging that is also used for

breast mass detection and evaluation; it is a low-cost

modality that is often used for screening. However, it has

less sensitivity than other available imaging techniques and

requires an experienced radiologist. Scanning by Com-

puted Tomography (CT) is also used for tumor detection in

the breast [3, 31]. There are some drawbacks related to the

use of CT that include the radiation risks, the low sensi-

tivity of the modality and the use of the system is relatively

expensive. Positron Emission Tomography (PET) is one of

the few imaging modalities that provide good functional

assessment of the human body in general and can provide

imaging of breast masses. Unfortunately, PET is using

ionized radiation and has radiation risks [34]. Scanning

with Magnetic Resonance Imaging (MRI) has proved to be

effective in obtaining small details in a tissue, thus is being

used to evaluate women with high risk of developing breast

mass. MRI is providing means for early diagnosis and was

found to be capable of enhancing the identification of

breast cancer and has better sensitivity compared to

mammography when it comes to patients with dense breast

tissue [9]. One of the important parts affecting the image is

the Radiofrequency (RF) coil that transmits and receives

radiofrequency as depicted in Fig. 1. Tissue under exami-

nation may go inside the coil and these types of coils are

called volume coils. If the tissue being examined is placed

closely under the coil, the type of the coil in this case is a

surface coil [16]. Modern MRI scanners generate various

sequences that can be classified based on the appearance of

tissues. The most popular MRI sequences are T1 and T2.

T1 is known as longitudinal relaxation, which varies

depending on the tissue type.

T2 is the transverse relaxation and occurs when the spins

relax in the transverse plane. When the magnetic field

travels through the tissue, it will start to possess some

inhomogeneity. Therefore, some spins fall out of syn-

chronization. Desynchronizations happen in this case due

to the inhomogeneity in the magnetic field resulting in a T2

signal. Tissue with long T1 signal appears dark in the

image as they emit less signal and vice versa. However,

long T2 signal reflects dark tissue in the images [17, 40].

There are some other means of detecting cancers other

than imaging modalities, and this includes clinical exami-

nation and palpation, pathological examination through

fine needle aspiration or biopsy, histopathological evalua-

tion which can potentially help identify cancer type, and

biomarkers such as the cancer cells DNA and mRNA [23].

The tumor size can be determined by imaging, but this

could be challenging when a small size tumor is under

examination, subsequently resulting in difficulties to

identify margins before surgical removal [30].

Dynamic Contrast Enhanced Magnetic Resonance

Imaging (DCE-MRI) is routinely used for early diagnoses

of breast cancer staging. The DCE-MRI time-signal

intensity curve (TIC) reflects the hemodynamic character-

istics of a specific lesion. The TIC is obtained through

repeated MRI scans following the injection of a contrast

agent; a qualified TIC typically takes 12 min to complete

the scans. The output signal over a selected time interval

can be described using kinetic curves for obtaining quan-

titative data of a Region of Interest (ROI). To analyze TICs

from breast DCE-MRI, the circular ROI must be placed on

the part of lesion that has fastest enhancement with fastest

washout, or the most worrisome part. There are no uniform

criteria for interpreting the kinetic curve. Some authors are

Fig. 1 Philips breast coil of an MRI machine [16]
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more concerned with the shape of the TIC under DCE-

MRI, whereas others are more concerned with the

enhancement threshold values of malignancy [36].

During repetitive performance, semi-quantitative

development kinetic features are often used to progress

specificity for detecting malignancy. There is an initial

peak development phase, and the existence of a delayed

phase washout, as defined by the American College of

Radiology (ACR) Breast Imaging Reporting and Data

System (BI-RADS) Breast MRI Atlas [32, 44]. So, the

curves are divided into different types, as shown in Fig. 2

[29]. Type I denotes a developing form that indicates a

steady increase in the signal strength over time. The Type

II curve exhibits a plateau pattern with an initial uptake of

contrast molecules followed by a plateau phase, which is

symptomatic of a malignant tumor. The Type III curve is a

washout pattern with an initial quick uptake and a subse-

quent decrease in signal enhancement that is highly pre-

dictive of malignancy [29].

In order to provide more diagnostic information and

decrease unnecessary breast biopsies, this study uses a

kinetic model with DCE-MRI combined with deep and

textural features that were derived from breast lesions.

2 Related works

Recently, many studies have taken advantage of the vital

function of kinetic models to enhance breast lesion diag-

nosis by precisely differentiating benign and malignant

lesions. A CNN model was developed by Chen et al. [6] on

the basis of DCE-MRI to define and predict the malignancy

of breast lesions using a training/validation dataset of, 6165

slices from 364 patients (234 malignant, 130 benign). The

accuracy, sensitivity, and specificity of the slice-based

technique were 90.3%, 96.2%, and 79.0%, respectively,

while the area under the Receiver Operating Characteristic

(ROC) curve for breast cancer prediction was 0.955. Peng

et al. [38] examined the abilities of Deep Learning (DL)

and Radiomics Analysis (RA) to predict pathological

Complete Response (pCR) to Neo Adjuvant Chemotherapy

(NAC) in breast cancer based on pre-treatment DCE-MRI.

This retrospective study included 356 breast cancer

patients who had DCE-MRI prior to NAC and surgery after

NAC. DCE-MRI was used to derive the image character-

istics and kinetic parameters of malignancies. By incor-

porating kinetic parameters or molecular data into image-

only Linear Discriminant Analysis (LDA) and CNN

models, the image-based RA and DL models were devel-

oped. The image-kinetic-molecular DL model’s 0.83 area

under the ROC curve was higher than that of the image-

kinetic and image-molecular DL and RA models. Using

Fully Convolutional Networks, Zhang et al. [47] proposed

a framework for breast tumor segmentation (FCN) based

on Mask-guided Hierarchical Learning (MHL). In order to

remove distracting information from the input DCE-MR

images, they first created an FCN model to produce a 3D

breast mask as the ROI for each image. Then, to do coarse-

to-fine segmentation for breast cancers, they created a two-

stage FCN model. To address the class-imbalance issue,

they specifically suggested a Dice-Sensitivity-like loss

function and a reinforcement sampling approach. A mean

Dice Similarity Coefficient (DSC) of 0.72, which is

equivalent to mutual DSC between expert radiologists, was

obtained when they verified the MHL approach on 272

cases.

Piantadosi et al. [39] introduced the Breast Lesion

Automatic Detection and Diagnosis System (BLADeS),

and a comprehensive fully automated breast CAD system

designed to assist the radiologist with patient diagnosis.

They suggested a hierarchical architecture with modules

for breast segmentation, attenuating motion artifacts,

localizing lesions, and, finally, classifying lesions accord-

ing on their malignancy. To achieve a valid comparison,

performance was assessed on 42 individuals with

histopathologically identified lesions. Piantadosi et al. [39]

used deep learning to automate breast lesion segmentation

in DCE-MRI, based on past learned by training the pro-

posed architecture on images taken at very particular time

intervals. To do this, they suggested the Three Time Points

(3TP) U-Net, a U-Shaped deep convolutional neural net-

work that may be used to enhance lesion segmentation

results by utilizing the well-known 3TP technique. The

proposed technique enhances the dynamic course of the

contrast agent while minimizing the effect of noise, which

increases the lesion segmentation effectiveness. In addi-

tion, the results have shown that deep-based methods

always outperform non-deep ones, with the introduced 3TP

U-Net performing better in terms of median DSC. Jing

et al. [26] proposed a computer-aided diagnosis method

based on morphological features and kinetic curve assess-

ment. To determine the malignancy of breast lesions inFig. 2 Different types of kinetic curves from DCE-MRI [29]
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MRI images, morphological features should be considered

first, followed by others such as temporal data in dynamic

contrast enhanced MRI sequences. A 2D CNN and a

LSTM network were utilized to extract morphological

characteristics and kinetic information, respectively, in this

technique. The extracted features from these two methods

were then combined to achieve a mean AUC of 83% in

classifying a total of 173 pathologically confirmed MRI

breast slices (109 and 64 MRI slices were benign and

malignant, respectively). Hu et al. [18] proposed an auto-

mated method for improving the clinical diagnosis of

pathological breast using multiparametric MRI. Individual

features from DCE-MRI and T2w sequences were extrac-

ted using the pretrained CNN. The combined features

significantly improved diagnostic performance, with an

AUC of 87% for distinguishing benign from malignant

lesions. From previous studies, the existing models for

distinguishing innocuous benign disorders from life

threatening malignant breast cancers rely essentially on

deep features or temporal kinetic features. Therefore,

combining the handcrafted features that are extracted from

the multitemporal images at various time points, with the

deep and kinetic features will further improve the perfor-

mance of breast cancer diagnosis.

The motivation for this study is to develop and validate

a very powerful and reliable automated system offering

possibilities for differentiating malignant from benign

breast lesions by combining Quantum Chebyshev polyno-

mials (QCHPs), DL, and kinetic features from DCE-MRI.

Our contribution can be summarized as follows:

1. The new proposed QCHPs method which is used as a

feature extractor for image classification tasks.

2. Effective use of multiple breast cancer characteristics

features that may improve the detection of breast

malignancy with better precision, as well as, reducing

unnecessary biopsies.

The remaining sections of this paper are organized as

follows; Sect. 3 provides the details of the proposed model

for classifying breast DCE-MRI sequences; Sect. 4 pre-

sents the experimental results; and finally, the conclusions

are given in Sect. 5.

3 Material and method

In this study, utilization of kinetic, QCHPs, and deep fea-

tures of DCE-MRI of the breast are used to improve the

diagnosis process by reducing unnecessary follow-ups or

biopsies for many breast masses.

The proposed study includes four stages. The first stage

is the data collection, preprocessing, feature extraction,

combining features and classification.

The preprocessing is to enhance the quality of input

images; the feature extraction, three methods for the fea-

ture extraction are applied: Kinetic features; B. CNN deep

learning features and the hand crafted (QCHPs) features.

The combining features strategy of all extracted features to

generate the feature vector for the classification stage. The

final stage is the classification process, in which LSTM

classifier is utilized. The flow process is illustrated in

Fig. 3.

The proposed model aims to quickly identify patients

with pathological breasts and classify them into benign or

malignant. The kinetic features are determined after

implementing TIC analysis using the Radiant Software by

experienced radiologists. The proposed model comprises

three main stages namely: (i) DCE-MRI slices prepro-

cessing; (ii) feature extraction and finally (iii) an LSTM

network is used to classify these features into benign and

malignant.

3.1 Breast DCE-MRI dataset

The breast DCE-MRI dataset used in this study was

downloaded from Duke University Medical Center, and

acquired from January 1, 2000 to March 23, 2014 [41]. A

total number of 600 patients with histopathological con-

firmation were selected from 922 patients for the present

study and excluded patients with previous surgical exci-

sion, or chemotherapy, or radiotherapy, invisible lesions,

and lesions without final pathology results. The final

dataset used in this study includes 300 DCE-MRI

sequences of histopathology proven malignant patients and

300 DCE-MRI sequences of histopathology proven benign

patients. All breast DCE-MRI examinations were per-

formed using 1.5 T and 3 T systems (GE medical system

and Siemens) using breast array coil with four dedicated

channels. Each DCE-MRI sequence comprised a pre-con-

trast T1 weighted scan acquired prior to multiple T1

weighted post-contrast scans with contrast injection. All

patients had a single lesion in either left or right breast and

confirmed in both pathologic and imaging studies. Addi-

tionally, the region of interest (ROI) around the breast

lesion was outlined manually by a consultant radiologist to

confirm the provided annotations of the downloaded

dataset.

3.2 DCE-MRI breast image preprocessing

Artifacts in MRI can be caused by the scanner hardware or

by the patient’s interaction with the hardware. Artifacts in

MRI scans may be confused with a pathology or just

reduce the quality of examinations and resulting in mimic

pathologies and improper diagnoses [27]. These artifacts

can be categorized into three main sources: physiologic

Neural Computing and Applications

123



artifacts, inherent physical artifacts, and hardware and

software artifacts. Physiologic artifacts are generated from

patient movement, including breathing, heartbeat, and

blood flow. This type of artifacts typically appears as

blurring or ghosting, while inherent physical artifacts, also

known as chemical-shift artifacts, occur during the fre-

quency encoding of the MRI process. This makes the edges

of the anatomy appear as a black or bright band and may be

diagnosed as pathological. Therefore, several methods

have been proposed to remove artifacts and improve the

diagnostic quality [42]. Additionally, major cons of MRI

compared to other medical imaging modalities are the fact

that its intensities are not standardized and varied between

the same and consecutive MRI slices due to MRI scanners.

Moreover, acquiring MRI data from different scanners at

different sites produce variances in the dynamic intensity

range of the MRI slices even when they use identical

acquisition protocols. Furthermore, when different manu-

facturers and scanner-models are used, bias field and dif-

ferent pulse sequence parameters can cause the variation in

the intensity of MRI scan [10, 14]. Therefore, all breast

DCE-MRI were enhanced by Gaussian filter method and

normalized by the histogram normalization method to

eliminate intensity variations from any postprocessing

steps [10, 11, 14]. In addition, all breast DCE-MRI scans

were registered to the same spatial resolution by scaling

using bilinear interpolation because the dataset was cap-

tured using a variety of imaging devices with varying pixel

spacing and spatial resolutions [49]. Then, to determine

and quantify the tumor vascularity of the breast, the DCE-

MRI was analyzed to reflect the hemodynamic character-

istics of breast lesions, by drawing manually the TIC pat-

terns using Radiant software. An experienced radiologist

with 10 years of experience who was blinded to patient

clinical information placed a circular ROI with diameters

in the range of 20–30 pixels, along the edge of the suspi-

cious lesion area that exhibits strongest enhancement in all

sequences during and after intravenous contrast agent

injection [45]. When selecting the ROI, the non-enhanced

regions such as the edge of the lesions, bleeding, necrosis,

cystic degeneration, and blood vessels in the tumor are

avoided as much as possible [43, 45, 48, 49]. Then, the

TICs are usually obtained from a selected ROI of each

examination and classified subjectively into three patterns

(persistent, plateau, and washout). The TIC shape gives an

endpoint indication for diagnosing breast lesions, but it is

not used as a final decision for determining the malignance

of breast lesions [28].

3.3 Feature extraction

A. Kinetic features

Following the extraction of the TIC pattern of the lesion

area, the quantitative analysis of the delayed phase of TIC

was performed to categorized it into three types (persistent,

plateau, and washout) based on Eq. (1) [33, 46].

SISlope ¼
SItail � SImeanð Þ

SImean

� 100% ð1Þ

where SImean represents the mean values of the first and

second post-contrast time points. SItail indicates the signal

intensity of the last time point. Then, the TIC pattern is

classified as persistent when SISlope is greater than 10%, as

a washout when SISlope is less than - 10%, and otherwise,

it is considered as a plateau.

Moreover, the kinetic curve can be used to compute a

number of fundamental characteristics derived from the

TIC pattern.

• The mean curve measure is determined by Eq. (2)

[33, 46].

MSI ¼ Max SIiþ1 � SIið Þ ð2Þ

where SIi and SIiþ1 represent the signal intensity of the

former and latter time points respectively. i denotes the

time points, and ranges between 0 and 4 in this study.

• The initial percentage of enhancement is determined by

Eq. (3) [33, 46].

Fig. 3 Flow process for MRI

classification
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EInitial ¼
SI1 � SI0ð Þ

SI0
� 100% ð3Þ

where SI1 and SI0 represent the first post-contrast and

pre-contrast time points respectively.

• The percentage of peak enhancement is determined by

Eq. (4) [33, 46].

EPeak ¼
SIPeak � SI0ð Þ

SI0
� 100% ð4Þ

where SIPeak indicates the peak value of the signal

intensity at any time point.

• The early signal enhancement ratio is determined by

Eq. (5) [33, 46].

ESER ¼ SI1 � SI0ð Þ
ðSI2 � SI0Þ

� 100% ð5Þ

where SI2 represents the second post-contrast time

point.

• The second enhancement percentage is determined by

Eq. (6) [33, 46].

SEP ¼ SI2 � SI0ð Þ
SI0

� 100% ð6Þ

• Finally, the gradient (h) is the slope of the tangent that

touches the signal intensity at each time point. It is

calculated by dividing the vertical change by the

horizontal change between each pair of successive

signal intensity time points. h is determined by Eq. (7).

h ¼ tan�1 ðSIiþ1 � SIiÞ
ðtiþ1 � tiÞ

ð7Þ

where h is positive when the intensity curve increases

and negative when it decreases.

Four features are extracted by the gradient method from

kinetic curve of breast lesions. Consequently, ten kinetic

features are extracted from every breast DCE-MRI, which

provide a quantitative basis for distinguishing between

benign and malignant breast lesions.

B. CNN architecture for feature extraction

Even though the kinetic features are designed based on

expert knowledge, they have a very high sensitivity and a

relatively low specificity for diagnosing breast lesions

[15, 45]. The low specificity indicates that there are com-

mon characteristics shared by benign and malignant

lesions. This leads to produce a high number of false-

positive cases and unnecessary biopsies [7]. Therefore, to

efficiently extract more features for diagnosing breast

lesions accurately, a learning-based technique is used to

learn more features with high specificity using a CNN

method as it was applied successfully in many medical

applications [15, 18, 19, 49].

The procedure for the extraction of deep features from

breast DCE-MRI sequences (t0, t1, t2, and t3 respectively)

includes cropping breast lesions manually by an experi-

enced radiologist prior to the implementation of the CNN.

The cropping is based on the maximum dimension of each

breast lesion. The image rescaling is avoided because of

the distortion of precious high-frequency details. So, a

margin of zero pixels around the cropped lesion image was

added to unify images prior to implementing the CNN. All

cropped images were standardized to 98 9 98 pixels as

required by the CNN architecture. The used CNN consists

of a set of convolution layers, pooling layers, an activation

function, and a fully connected layer. These layers are used

to transform the DCE-MRI slices into the desired output

after training [15]. Each convolution layer includes a set of

kernel filters which are slid across the DCE-MRI slice by

shifting and multiplying from one position to another to

extract certain features. This procedure is called stride and

a stride refers to the number of pixels that the kernel filter

will skip. Therefore, the spatial dimensions of the output

volume after every layer decrease significantly. Then, the

output of convoluting kernel filters is rectified by elimi-

nating the negative numbers from the feature maps by

using the ReLU activation function and passed through

pooling layer for down sampling. Consequently, a batch

normalization layer is used to normalize feature maps and

regularize the training process of the CNN. Finally, the

weights of CNN improve and subsequently the error

function decreases by using the gradient-based optimiza-

tion algorithm [13].

The proposed structure of extracting deep features (DF)

from breast DCE-MRI sequence is illustrated in Fig. 4. The

same CNN is used to extract DF from pre-contrast at t0 and

post-contrast (t1, t2, and t3 respectively), as illustrated in

Fig. 5. Consequently, two DFs are extracted from every

time phase of the MRI slice.

C. Image feature extraction based on Quantum Chebyshev

polynomials (QCHPs)

This study aims to explore a novel feature extraction

model based on QCHPs. The concepts of fractional cal-

culus are mentioned as important tools for investigating

studies of discontinuity or local continuity (discrete)

[1, 21, 24], while the quantum calculus represent suit-

able roles to generalize many concepts in mathematics,

engineering and physics [22]. In this effort, a q-calculus

has been proposed to generalize the Chebyshev polynomial

and formulate it in a convolution linear operator.

The q-exponential eqðvÞ is formulated by Eq. (8).
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eq vð Þ ¼
X1

n¼0

vn

½n�q!
¼

X1

n¼0

vnð1� qÞn

ðq; qÞn

¼
X1

n¼0

vn
ð1� qÞn

1� qnð Þ 1� qn�1ð Þ � � � 1� qð Þ ; ½n�q

¼ qn � 1

q� 1
ð8Þ

where ½n�q! is the q-factorial; ðq; qÞn is the q-Pochhammer

expression and is formulated by Eq. (9).

ðq; qÞn ¼ ð1� qnÞð1� qn�1Þ � � � 1� qð Þ ð9Þ

The Chebyshe polynomials T nðÞ ¼ cosðn� arccosðÞÞ of
the first kind are obtained from the recurrence relation.

T0ðvÞ ¼ 1

T1ðvÞ ¼ v

Tnþ1ðvÞ ¼ 2vTnðvÞ � Tn�1ðvÞ:
ð10Þ

The ordinary generating function for Tn is

X1

n¼0

Tn vð Þtn ¼ 1� tv
1� 2tvþ t2

ð11Þ

Note that

TnðvÞ ¼ n
Xn

k¼0

ð�2Þk nþ k � 1ð Þ!
n� kð Þ! 2kð Þ! ð1� vÞk; n[ 0: ð12Þ

Moreover, the exponential generating function is

X1

n¼0

Tn vð Þ t
n

n!
¼ 1

2
et v�

ffiffiffiffiffiffiffiffi
v2�1

p� �
þ et vþ

ffiffiffiffiffiffiffiffi
v2�1

p� �� �

¼ etvcosh t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1

p� �
ð13Þ

By combining Eqs. 8 and 9, we obtain the Quantum

Chebyshev polynomials (Q-Chebyshev polynomials).

The q-exponential generating function of Chebyshev

polynomials is:

X1

n¼0

½Tn�q vð Þ tn

½n�q!

¼ 1

2
eq t v�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1

p� �� �
þ eq t vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1

p� �� �� �

ð14Þ

where

½Tn�qðvÞ ¼ ½n�q
Xn

k¼0

ð�2Þk
½nþ k � 1�q!
½n� k�q!½2k�q!

ð1� vÞk ð18Þ

In this application, the nth coefficient of Eq. 15, when

k = n, can be used, as follows

½Tn�q vð Þ¼ v� 2ð Þn qn � 1

q2n � 1

� �
ð16Þ
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Fig. 4 Structure of DF extraction
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Fig. 5 Proposed model for DF

extraction from DCE-MRI
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For one image block, the texture feature is given by

Eq. (17).

½Tn�q v k; lð Þð Þ ¼
Xk

i¼1

Xl

j¼1

v k; lð Þ � 2ð Þn qn � 1

q2n � 1

� �
ð17Þ

where (q) is the quantum number between 0, and 1, and (v)
is the pixel probability. The proposed image feature

extraction model is defined in Eq. 17, which is based on

Quantum Chebyshev polynomials (QCHPs) with the

quantum number q. The proposed QChPs model extracts

the image features based on the likelihood of each pixel

probability as given in Algorithm 1. The feature extraction

procedure begins by dividing the DCE-MRI slice into

nonoverlapping blocks of size (4 9 4) pixels. Then, the

texture features are extracted from every block. The pro-

posed QChPs model preserves and improves morphologi-

cal features in a high and low change gray-level

respectively. Finally, every time phase of the breast DCE-

MRI (pre and post-contrast) has a feature vector of 16

parameters (10, 2, and 4 features from kinetic, CNN, and

QCHPs methods respectively). A total of 64 parameters are

included in the feature vector, extracted from four-time

phases of breast DCE-MRI (t0, t1, t2, and t3 respectively).

3.4 LSTM classifier

The LSTM was developed by Hochreiter and Schmidhuber

to address the drawbacks of the artificial neural networks

(ANNs) in sequential problems [15]. LSTM is capable of

learning long-term dependencies and remembering infor-

mation for prolonged periods of time as a default. The

LSTM is used for classification of sequential and time-

series data due to its ability to recognize image features

across time by the connected memory blocks through its

layers [17].

In this study, the LSTM includes seven layers, sequen-

tial input with 64 dimensions that comes from combined

extracted features of breast DCE-MRI, 200-hidden units

and 20% drop out. The LSTM network was also trained

using the Adam optimization method, with the maximum

epoch value set to 750 and the gradient threshold value set

to 1.

4 Results and discussion

The experimental results show the effectiveness of the

combined extracted features to classify the breast DCE-

MRI into benign and malignant. In this study, 64 features

were extracted by kinetic, CNN, and QCHPs methods from

breast DCE-MRI sequences. The utilized dataset is adopted

to evaluate the proposed model by preserving 70% of

DCE-MRI slices for the training phase of CNN and LSTM,

and 30% of the DCE-MRI slices are used to assess the final

classification performance.

The utilized CNN was initialized experimentally by

convolution layers, neurons, pooling layers, learning rate

and kernel size. The proposed CNN included eight layers

as summarized in Table 1. It is trained with the following

parameters; the momentums are 0.9 with a learning rate of

0.0001, the maximum number of epochs is 30 with the

minimum batch size of 64, and the maximum iteration

number is 750. Figure 6 shows the training progress plot of

the proposed CNN, and this indicates that the proposed

CNN has a good performance in extracting DF from breast

DCE-MRI sequences.
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The performance of the combined kinetic, QCHPs, and

DF features that were extracted from breast DCE-MRI

sequences to differentiate malignant from benign lesions is

evaluated by comparing the following metrics: the true

positive (TP) rate and the true negative (TN). When the

breast mass is classified as a benign, it is considered as a

TP. When the breast mass is classified as a malignant, it is

considered as a TN. A total of 600 unique breast lesions

from 922 breast DCE-MRI sequences (mean age

50 ± 13 years; age range 25–75 years) were ultimately

included in this study where 300 were benign and 300 were

malignant. The median size of breast malignant lesions was

23 mm3 (range, 10–65 mm3), while for the benign lesions,

it was 12 mm3 (range, 5.5–30 mm3). During experimen-

tation, 70% of the dataset was used as the training part and

the remaining 30% was used as unseen dataset for testing.

These factors lead to the occurrence of random fluctuations

in the intensity signal of DCE-MRI sequences. Therefore,

the Gaussian filter and histogram normalization methods

were implemented to enhance and normalize all DCE-MRI

sequences respectively in the preprocessing stage.

The experimental results show that the extracted QCHPs

features improved the efficacy of diagnosing the breast

DCE-MRI sequences into malignant or benign breast

lesions, when combined with kinetic and DF features and

classified by LSTM model, as illustrated in Table 2. On the

independent test dataset including both benign and malig-

nant lesions, the trained LSTM model yielded an ACC and

AUC values of 99.5% and 100% respectively in differen-

tiating between benign and malignant breast lesions.

It is noted that the performance of diagnosing breast

lesions was improved significantly when the kinetic fea-

tures that are extracted by TIC analysis were combined

with the proposed QCHPs features and DF features, and

outperforms their performances when using them individ-

ually, as shown in Fig. 7. MATLAB R2021b was used for

all statistical and computational studies (64-bit version)

environment (The MathWorks, Natick, MA, USA).

There have been no studies examining the best timing of

delayed post-contrast imaging for distinguishing benign

from malignant suspicious lesions. Additionally, many

medical institutions try to shorten timing of scan protocols

for throughput and patient comfort. As a result, assessing

too early may fail to sufficiently demonstrate washout in

malignant lesions, whereas testing too late may overesti-

mate washout kinetics in benign lesions [37]. Therefore, to

determine the best post-contrast timing for discriminating

malignant from benign breast lesions, independent sample

t-test was used to choose the optimal post-contrast time for

diagnosing malignance and benign breast lesions, as shown

in Table 3. We conclude that the best post-contrast time for

discriminating malignance from benign breast lesions (p-

value\ 0.0001) is at t2 (5 min) after contrast injection.

Therefore, to determine the best post-contrast timing for

discriminating malignant from benign breast lesions,

independent sample t-test was used to choose the optimal

post-contrast time for diagnosing malignance and benign

breast lesions, as shown in Table 3. We conclude that the

best post-contrast time for discriminating malignance from

benign breast lesions (p-value\ 0.0001), is at t2 (5 min)

after contrast injection.

4.1 Ablation study

The concept of ablation experiments to examine and

demonstrate the validity of the proposed model of CNN by

removing and replacing in order a convolutional layer,

activation function, and pooling layer to figure out how

these components impact the system’s performance. To be

more specific, the performance of the CNN model is

evaluated by combining with the other feature sets of

Kinetic and QCHP. An ablation analysis was performed

using three experiments that involved changing the number

of kernel filters that impact on the performance of the

suggested network. Three subsets of kernel filters were

tested in three convolutional layers respectively. These

subsets are (32, 32 and 16), (64, 32 and 16), and (64, 64 and

16). The performance of the ablated models is summarized
Table 1 Proposed architecture of CNN

Layer name Kernel filter Kernel size Feature map

Input layer (98 9 98)

Convolution layer 1 64 (3 9 3) (98 9 98 9 64)

Pooling layer 1 (2 9 2) (49 9 49 9 64)

Convolution layer 2 64 (3 9 3) (49 9 49 9 64)

Pooling layer 2 (2 9 2) (24 9 24 9 64)

Convolution layer 3 32 (7 9 7) (24 9 24 9 32)

Pooling layer 3 (2 9 2) (12 9 12 9 32)

Fully connected layer (1 9 2) (1 9 2)
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Fig. 6 The training plot of the proposed CNN
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in Table 4. According to the achieved results by the three

subset of kernel filter makes the system perform best.

4.2 Comparison with existing state-of-the art

To validate the effectiveness of the proposed method,

Table 5 summarizes previous studies that investigated the

diagnosis of breast DCE-MRI breast scans. Jing et al. [26]

have used CNN with LSTM to classify DCE-MRI breast

scans into malignant and benign, which was used to detect

the possibility of breast cancer. The authors have achieved

an AUC of 83% on 173 images. Other wok by Ji et al. [25]

had used the combination of seven different features

extracted from 1483 images. The achieved AUC was 89%.

The use of morphological features with dynamic features

was investigated in Fusco et al. [8]. On only 48 images, the

reported achieved classification accuracy was improved to

91.70%. The CNN deep learning approaches have been

further investigated to improve accuracy. It was reported

that there is an urgent need to improve breast cancer

detection by applying the CNN deep learning model. In

Antropova et al. [4], the VGG Net with LSTM classifier

has been applied for classifying 703 DCE-MRI breast

images into malignant and benign cases, and the achieved

AUC was 88%. Likewise, Hu et al. [18] have applied the

VGG19 Net to classify 927 breast MRI into malignant and

benign breast masses. The achieved detection accuracy was

87%.

Table 2 Achieved results by the proposed QCHPs with and without kinetic and CNN features using LSTM classifier

Features ACC 100% TP 100% TN 100% Sensitivity 100% Specificity 100% AUC 100%

Kinetic features 83.3 85.0 81.7 82.3 84.5 79.0

QCHPs-Pre-contrast 84.2 81.6 86.6 85.9 82.5 81.0

QCHPs-Post-contrast 1 88.3 90.0 86.6 87.1 89.6 86.0

QCHPs-Post-contrast 2 93.2 94.0 92.3 92.5 93.9 95.0

QCHPs-Post-contrast 3 92.7 93.7 91.7 91.8 93.5 90.0

CNN-Pre-contrast 87.5 85.0 90.0 89.4 85.7 85.0

CNN-Post-contrast 1 93.6 94.0 93.3 93.4 93.7 95.0

CNN-Post-contrast 2 95.8 96.7 95.0 95.1 96.6 96.0

CNN-Post-contrast 3 94.2 95.0 93.3 93.4 95.0 95.0

Combined Features-Pre-contrast 89.2 88.3 90.0 89.8 88.5 87.0

Combined Features-Post-contrast 1 96.7 96.6 95.6 95.7 96.6 97.0

Combined Features-post-contrast 2 99.5 99.7 99.3 99.3 96.7 100

Combined Features-Post-contrast 3 97.5 98.3 96.7 96.7 98.3 98.0
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Fig. 7 Comparison of breast lesion classification of four DCE-MRI sequences by using Kinetic, QCHPs, CNN and combined features. Kinetic

with QRP features
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Table 3 Comparison of post-

contrast timings for

differentiating benign from

malignant tumors

Timings for delayed phase of kinetic curve Median P-value

t0 0 0.0510

t1 196 s. (3.26 min) 0.0160

t2 310 s. (5.16 min) 0.0001

t3 418 s. (6.96 min) 0.0040

Table 4 Ablation study
Experiment Kernel filter (convolutional layer1, 2, 3) Accuracy (%)

Ablation study 1 32, 32 and 16 96.3

Ablation study 2 64, 32 and 16 96.7

Ablation study 3 64, 64 and 16 97.3

Proposed model 64, 64 and 32 99.5

Table 5 Comparisons of the proposed model to other breast DCE-MRI diagnosis methods

Refs. Dataset Classifier Features Accuracy

100%

AUC

100%

Fusco et al.

[8]

48 (26 malignant and 22 benign Decision tree

Bayesian

classifier

Morphological features

Dynamic features

91.7 –

Ji et al. [25] Tianjin Medical University Cancer Institute and Hospital,

1483 (987 malignant and 496 benign)

SVM Radiomic features

Size

Shape

Morphology

Enhancement texture

Kinetics

Enhancement variance-

kinetics

– 89

Yin et al.

[46]

Shengjing Hospital, 156 (85 malignant

and 71 benign)

– Kinetic features

Maximum slope of

increase

Signal intensity slop

Initial percentage of

enhancement

Percentage of peak

enhancement

Early signal

enhancement ratio

Second enhancement

percentage

82.05 –

Antropova

et al. [4]

703 (482 malignant and 221 benign) LSTM VGG Net – 88

Hu et al.

[18]

927 (728 malignant and 199 benign) SVM VGG19 Net 87

Jing et al.

[26]

173 (64 malignant and 109 benign) LSTM 2D CNN

LSTM

– 83
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The proposed study was successful in detecting abnor-

malities that aid in the early detection of breast cancer, with

a detection accuracy of 99.50%. The hybrid features of the

DCE-MRI images were extracted from a publicly available

dataset in this study. The proposed QCHPs model for

textural extraction feature described the relationship of

gray levels between neighboring pixels. The proposed

mathematical method, which was thought to be important

for breast cancer diagnosis, was able to extract features

from the tumor region efficiently. The main limitation of

this study was that it included mostly malignant lesions and

a small number of benign lesions, which may make gen-

eralizing our findings to the entire spectrum of breast

lesions difficult.

5 Conclusion

The early detection of breast cancer can help to reduce the

mortality rate caused by the disease. The goal of this study

was to detect the masses and to classify benign and

malignant tissues in DCE-MRI. In this study, a new hybrid

features extraction is proposed to boost the automatic

identification of breast cancer by using three features

extraction methods: Kinetic Features, CNN deep learning

features, and new features extraction by proposed QCHPs

to automatically detect breast cancer by using long short-

term memory (LSTM) as the classifier. Future research will

investigate other abnormalities such as carcinomas, mas-

ses, lumps, calcification, and asymmetry, all of which can

indicate a potential breast cancer. Experimental results

showed that the hybrid features extraction which was

guided by a big publicly available dataset has achieved a

detection accuracy of 99.50% in post-contrast 2, poten-

tially. Future research will look into other abnormalities

such as carcinomas, masses, lumps, calcification, and

asymmetry, all of which can indicate a potential breast

cancer.
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Table 5 (continued)

Refs. Dataset Classifier Features Accuracy

100%

AUC

100%

[12] Duke University Hospital, 300 (150 malignant and 150

benign)

SVM Kinetic features

Signal intensity slop

Maximum signal

intensity

Initial enhancement

Percentage of peak

enhancement

Early signal

enhancement ratio

Second enhancement

percentage

Gradient

QRPs features

97.4 100

Proposed Duke University Hospital, 600 (300 malignant and 300

benign)

LSTM Kinetic features

Signal intensity slop

Maximum signal

intensity

Initial enhancement

Percentage of peak

enhancement

Early signal

enhancement ratio

Second enhancement

percentage

Gradient

QCHPs features

CNN

99.5 100
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